
CTF3 WP4 - Probe Beam Linac

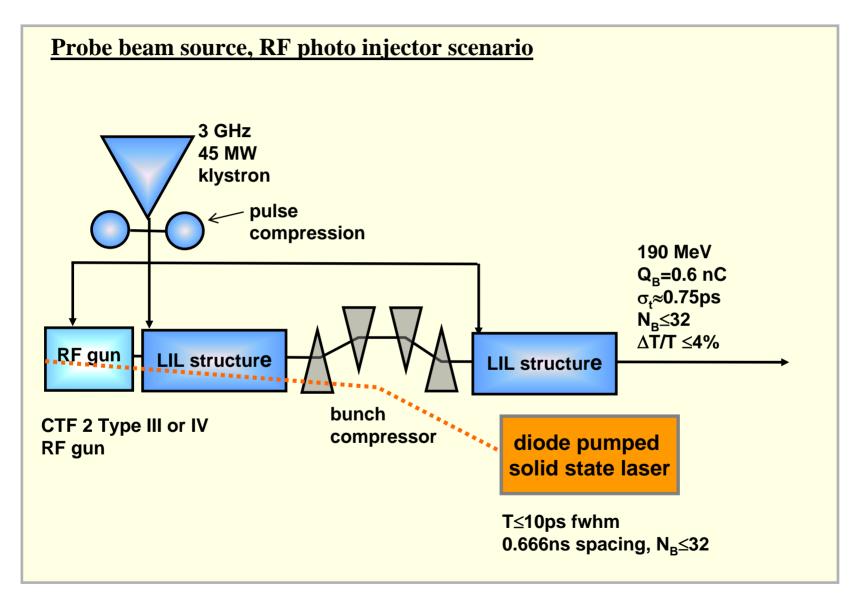
- Location
- Applications
- Specification
- Preliminary design considerations
- Boundary conditions

Hans-H. Braun, CTF3-WP4, 19.5.2004

Probe beam, typical application

Probe beam applications

- Test acceleration with CLIC prototype acceleration structures (WP 2.2)
- Engineering test-bed for CLIC accelerator module (WP5)
- Cross check of 30 GHz RF power calibration
- Measure synchronous frequency of accelerating structures prototypes
- Monitor phase advance of 30 GHz accelerating structures during high power processing
- Measure higher order mode frequencies of accelerating structures prototypes
- Test-bed for CLIC main beam instrumentation
- Influence of RF-break downs on beam characteristics
- Measurement of timing stability between drive and probe beam
- Test CLIC beam loading compensation scheme
- Test damping of higher order modes in accelerating structure prototypes
- Test-bed for CLIC main beam instrumentation


Probe beam, specification

Parameters		Motivation
Energy	$\approx 200 \text{ MeV}$	Avoid beam disruption in high RF fields
Normalised r.m.s. emittance	으 20 mm mrad	Fit in 30 GHz structure acceptance
Energy spread	<u>•</u> ± 2%	Measurement resolution
Bunch charge	0.6 nC	CLIC parameters
Bunch spacing	0.666 ns	
Number of bunches	Variable from 1-32	Measure 30 GHz structure transients
r.m.s. bunchlength	으 0.75 ps	Acceleration with 30 GHz

Preliminary design considerations, Version I

Preliminary design considerations, Version II

Boundary conditions

Schedule:	Has to be operational for spring 2008
Maximum length:	About 20 m, determined by CLEX building
Resource estimate: (very, very preliminary)	1.6 MCHF and 9 m*y assuming thermionic version and reuse of various LIL equipment, without klystron & modulator

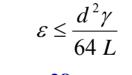
What is available for re-use

- Several LIL accelerating structures, 4.5 m each
- > The 90 kV front end from CTF3 preliminary phase
- **> RF** gun and cathode chamber from CTF II probe beam
- > Klystron
- Several solenoids

Reasoning for probe beam specifications

Beam Energy

The entry of a RF structure acts like a focusing length with


 $f = 2\frac{P_Z}{E}$

test structures with very high gradient $E \approx 200 \text{ MV/m}$, keep $f \blacklozenge 2m$ to avoid beam disruption

Beam emittance

30 GHz device of length L=2.0m, aperture d=3 mm to be tested with 4σ beam clearance

 \Longrightarrow $\varepsilon < 28 \text{ mm mrad}$

Bunch length

Energy spread due to bunchlength

$$\frac{\Delta T}{T} \approx 1 - \cos 2\pi v \,\sigma_t \,, \quad \frac{\Delta T}{T} < 1\% \,, \quad v = 30 \text{ GHz}$$

 $\implies \sigma_t \le 0.75 \text{ ps}$

Hans-H. Braun, CTF3-WP4, 19.5.2004