

Status of CTF3

G.Geschonke CERN, AB

CTF3 and CLIC

Energy = 3 (5) TeV Luminosity = $80*10^{33}$ cm⁻² s⁻¹

- Accelerating structure: 30 GHz, 150 MV/m
- 30 GHz RF power: 460 MW/m
- 2-beam scheme, high efficiency
- electron beam (drive beam): RF frequency multiplication, RF pulse compression energy storage and transport

Aim of CTF3: Demonstration of main CLIC-technology specific issues

CTF3 objectives

International Linear Collider Technical Review Committee (SLAC-R-606),2003 :

R1.1 CLIC accelerating structure, damped, at design gradient and pulse length

- * CTF3 as 30 GHz RF power source as early as possible
- * 30 GHz test stand, well instrumented, extended exploitation
- * aggressive structure development

R1.2 Drive beam scheme with a fully loaded linac

* CTF3: 150 MeV	CLIC: 2 GeV
3.5 A	4.9 A
3 GHz	937 MHz

R1.3 Power-Extraction Structure (PETS) with on/off capability, damped

R2.1 Validation of beam stability and losses in the drive beam decelerator, and design of a machine protection system

* benchmark experiments 35 A @ 150 MeV => 150 A @ 2 GeV

R2.2 Test of a relevant linac sub-unit with beam

* second beam required (probe beam)

Bunch combination – Preliminary phase

Modifications to the LEP pre-injector complex

Combination results – Preliminary phase

CTF3 - PRELIMINARY PHASE Streak camera image of beam time structure evolution low-charge demonstration of electron pulse combination and bunch frequency 1st turn multiplication by up to factor 5 streak camera **RF** deflectors 333 bs measurement Beam time structure Bunch spacing in linac 333 ps Beam Current 0.3 A 420 ns (ring revolution time) 5th turn **Bunch** spacing 66 ps **Beam structure** after combination Beam Current 1.2 A time

Installed so far:

Thermionic injector 3 GHz

LAL/SLAC/CERN

To be installed in 2004 and winter 2004/2005

Commissioning results 2003

	Nominal	Achieved
I	3.5 A	4.5 A
τ_{p}	1.5 μs	1.5 μs
E	20 MeV	20 MeV
ε _{n,rms}	100 π mm mrad	60-90 π mm mrad
$ au_{bunch,rms}$	5 p <i>s</i>	< 6.5 ps

First demonstration of full beam loading

CTF3 status 19.5.2004 G.Geschonke

Full Beam Loading demonstrated: >95 % efficiency ! More than Superconducting systems ! Beam stable !

Damped DBA structure

R. Corsini - 18/08/2003

Installation status

Two-Beam 30 GHz power production in CTF3

Installation status INFN

Installation finished Test with beam in 2004

> Tunable R₅₆ from bunch stretcher to compressor

Slide from A.Ghigo

CTF3 RF power plant

RF power pulse compression system

time

Barrel-Open-Cavity

Electric Magnetic Field Field

C1F3 status 19.5.2004 G.Geschonke

8000

Prototype power tested, installed 5 more being manufactured

Beam Diagnostic system

Inductive Beam Position monitor

•100ns Camera (>5ns) gate width 5μm thick Graphite OTR

Objective for 2004

Two operation periods in 2004

1.: • Commission new linac installation (8 structures)

• Test of 30 GHz RF power production with 1/3 PETS installed

2.: • Commission the remaining linac as far as possible

- Commission Bunch lengthening chicane with beam
- Commission full PETS incl. 30 GHz RF line

For start-up 2005:

Linac complete incl. sub-harmonic buncher Bunch Lengthening Chicane, Transfer Line and Delay Loop installed

Delay Loop (INFN)

- **Delay Loop magnetic layout has been** completed
- **DL Vacuum Chambers components** ordered:
 - Pumping sections
 - Shielded Bellows: first batch ordered
- **DL Vacuum Chambers components** mechanical drawing ready:
 - **Beam position monitor**
- **DL 1.5 GHz RF deflector** electromagnetic design finished
- **Missing magnets:**
 - Sextupoles and correctors ordered
 - Wiggler call for tender started
- Injection-extraction region vacuum chamber: drawing started

Civil engineering modifications to building finished

Slide from A.Ghigo INFN

Injector issues

Photo Injector: bunch phase coding done by laser timing

Unprecedented stability and beam current specifications

 Collaboration :
 Laser:
 RAL

 promising test done with fully diode pumped laser

 RF gun:
 LAL

 design in progress

 Photo
 Cathodes:
 CERN

 feasibility demonstrated

Bid to EU in FP 6 programme for Photo injector (PHIN): funded up to 90 % !

Available end 2006

Collaboration

• INFN:

Full responsibility of Delay Loop, Design of Combiner Ring, RF Deflectors participation in operation

• RAL

Laser Development for Photo Injector and manufacture

• LAL

Gun for Preliminary Phase, Gun High Voltage and electronics, Pre-bunchers, RF gun for Photo injector

• Uppsala University

Bunch phase monitor Operations support

• SLAC

Thermionic gun assembly, injector layout, participation in commissioning

- **NW University USA** Beam loss monitoring system Participation in DBA linac
- Finnish Industry One post for CLIC / CTF3
- University Lausanne PhD Student
- Many CERN groups: Beam diagnostics RF and acceleration system Infrastructure, cabling, Power converters Vacuum Operation Controls

CTF3 programme

Damped accelerating structure (R1)

CTF3 status 19.5.2004 G.Geschonke

Cost and manpower of work packages: Indicative estimate only

Conclusion

- Programme assured up to including Delay Loop
- Very ambitious programme
- Many open questions, in particular concerning benchmarking experiments
- Completion within time scale possible with more resources and more collaborations

Highly motivated team, excellent collaboration between all partners

Planning

	2004	2005	2006	2007	2008	2009
Drive Beam Accelerator						
30 GHz high-gradient test stand						
30 GHz high-gradient testing (4 months per year)			-			
R1.1 feasibility test of CLIC accelerating structure						
Delay Loop						
Combiner Ring						
R1.2 feasibility test of drive beam generation						
CLEX						
R1.3 feasibility test of PETS* structure						
Probe Beam						
R2.2 feasibility test of relevant CLIC linac sub unit						
Test beam line						
R2.1 Beam stability bench mark tests						